Sunada’s Method and the Covering Spectrum

نویسندگان

  • BART DE SMIT
  • CRAIG J. SUTTON
چکیده

In 2004, Sormani and Wei introduced the covering spectrum: a geometric invariant that isolates part of the length spectrum of a Riemannian manifold. In their paper they observed that certain Sunada isospectral manifolds share the same covering spectrum, thus raising the question of whether the covering spectrum is a spectral invariant. In the present paper we describe a group theoretic condition under which Sunada’s method gives manifolds with identical covering spectra. When the group theoretic condition of our method is not met, we are able to construct Sunada isospectral manifolds with distinct covering spectra in dimension 3 and higher. Hence, the covering spectrum is not a spectral invariant. The main geometric ingredient of the proof has an interpretation as the minimum-marked-lengthspectrum analogue of Colin de Verdière’s classical result on constructing metrics where the first k eigenvalues of the Laplace spectrum have been prescribed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Geometry

[1] Thomas Baird, GKM sheaves and nonorientable surface group representations, 2010. [2] Philip Boalch, Some explicit solutions to the Riemann-Hilbert problem, 2005. [3] Jennifer R. Daniel and Aloysius G. Helminck, Computing the fine structure of real reductive symmetric spaces, J. Symbolic Comput. 42 (2007), no. 5, 497–510. MR MR2322470 [4] , Algorithms for computations in local symmetric spac...

متن کامل

Constructing 1-cusped Isospectral Non-isometric Hyperbolic 3-manifolds

Abstract. We construct infinitely many examples of pairs of isospectral but non-isometric 1-cusped hyperbolic 3-manifolds. These examples have infinite discrete spectrum and the same Eisenstein series. Our constructions are based on an application of Sunada’s method in the cusped setting, and so in addition our pairs are finite covers of the same degree of a 1-cusped hyperbolic 3-orbifold (inde...

متن کامل

Blocking Short-Wavelength Component of the Visible Light Emitted by Smartphones’ Screens Improves Human Sleep Quality

Background: It has been shown that short-wavelength blue component of the visible light spectrum can alter the circadian rhythm and suppress the level of melatonin hormone. The short-wavelength light emitted by smartphones’ screens can affect the sleep quality of the people who use these devices at night through suppression of melatonin.Objectives: In this study, we examined the effects of co...

متن کامل

Equivariant Isospectrality and Isospectral Deformations of Metrics on Spherical Orbifolds

Most known examples of isospectral manifolds can be constructed through variations of Sunada’s method or Gordon’s torus method. In this paper we explore these two techniques in the framework of equivariant isospectrality. We begin by establishing an equivariant version of Sunada’s technique and then we observe that many examples arising from the torus method are equivariantly isospectral. Using...

متن کامل

Isospectral towers of Riemannian manifolds

In this paper we construct, for n ≥ 2, arbitrarily large families of infinite towers of compact, orientable Riemannian n-manifolds which are isospectral but not isometric at each stage. In dimensions two and three, the towers produced consist of hyperbolic 2-manifolds and hyperbolic 3-manifolds, and in these cases we show that the isospectral towers do not arise from Sunada’s method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009